A Stellar Ranging Scheme Based on the Second-order Correlation Measurement

Author:

Li Jian,Xu CanORCID,Liu Yinshen,Ma Yaqi,Liu Xinyao,Ma Xiaochen,Fan Run,Zhang An-Ning

Abstract

Abstract Stellar ranging is the basis for stellar dynamics research and in-depth research on astrophysics. The parallax method is the most widely used and important basic method for stellar ranging. However, it needs to perform high-precision measurement of the parallax angle and the baseline length together. We aim to propose a new stellar ranging scheme based on second-order correlation that does not require a parallax angle measurement. We hope our solution can be as basic as the parallax method. We propose a new stellar ranging scheme by using the offset of second-order correlation curve signals. The optical path difference between the stars and different base stations is determined by the offset of the second-order correlation curve signals. Then the distance of the stars could be determined by the geometric relation. With the distance to stars out to 10 kpc away, our astrometric precision can be better compared to Gaia by simulation. We also design an experiment and successfully demonstrate the feasibility of this scheme. This stellar ranging scheme enables further and more accurate stellar ranging without requiring any prior information or angle measurement.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3