Application of a Magnetic-field-induced Transition in Fe x to Solar and Stellar Coronal Magnetic Field Measurements

Author:

Chen Yajie,Li Wenxian,Tian Hui,Bai Xianyong,Hutton Roger,Brage Tomas

Abstract

Abstract Magnetic fields play a key role in driving a broad range of dynamic phenomena in the atmospheres of the Sun and other stars. Routine and accurate measurements of the magnetic fields at all the atmospheric layers are of critical importance to understand these magnetic activities, but in the solar and stellar coronae such a measurement is still a challenge due to the weak field strength and the high temperature. Recently, a magnetic-field-induced transition (MIT) of Fe x at 257.26 Å has been proposed for the magnetic field measurements in the solar and stellar coronae. In this review, we present an overview of recent progresses in the application of this method in astrophysics. We start by introducing the theory underlying the MIT method and reviewing the existing atomic data critical for the spectral modeling of Fe x lines. We also discuss the laboratory measurements that verify the potential capability of the MIT technique as a probe for diagnosing the plasma magnetic fields. We then continue by investigating the suitability and accuracy of solar and stellar coronal magnetic field measurements based on the MIT method through forward modeling. Furthermore, we discuss the application of the MIT method to the existing spectroscopic observations obtained by the Extreme-ultraviolet Imaging Spectrometer onboard Hinode. This novel technique provides a possible way for routine measurements of the magnetic fields in the solar and stellar coronae, but still requires further efforts to improve its accuracy. Finally, the challenges and prospects for future research on this topic are discussed.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3