Real-time Abnormal Detection of GWAC Light Curve based on Wavelet Transform Combined with GRU-Attention

Author:

Li HaoORCID,Zhao Qing,Shao Long,Liu Tao,Cui Chenzhou,Xu Yunfei

Abstract

Abstract Nowadays, astronomy has entered the era of Time-Domain Astronomy, and the study of the time-varying light curves of various types of objects is of great significance in revealing the physical properties and evolutionary history of celestial bodies. The Ground-based Wide Angle Cameras telescope, on which this paper is based, has observed more than 10 million light curves, and the detection of anomalies in the light curves can be used to rapidly detect transient rare phenomena such as microgravity lensing events from the massive data. However, the traditional statistically based anomaly detection methods cannot realize the fast processing of massive data. In this paper, we propose a Discrete Wavelet (DW)-Gate Recurrent Unit-Attention (GRU-Attention) light curve warning model. Wavelet transform has good effect on data noise reduction processing and feature extraction, which can provide richer and more stable input features for a neural network, and the neural network can provide more flexible and powerful output model for wavelet transform. Comparison experiments show an average improvement of 61% compared to the previous pure long-short-term memory unit (LSTM) model, and an average improvement of 53.5% compared to the previous GRU model. The efficiency and accuracy of anomaly detection in previous paper work are not good enough, the method proposed in this paper possesses higher efficiency and accuracy, which incorporates the Attention mechanism to find out the key parts of the light curve that determine the anomalies. These parts are assigned higher weights, and in the actual anomaly detection, the star is detected with 83.35% anomalies on average, and the DW-GRU-Attention model is compared with the DW-LSTM model, and the detection result f1 is improved by 5.75% on average, while having less training time, thus providing valuable information and guidance for astronomical observation and research.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3