Neutrino luminosity of stars with different masses

Author:

Shi Yang,Xue Xun,Zhu Chun-Hua,Wang Zhao-Jun,Liu He-Lei,Li Lin,Lü Guo-Liang

Abstract

Abstract Neutrinos play an important role in stellar evolution. They are produced by nuclear reactions or thermal processes. Using the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we study stellar neutrino luminosity with different masses. The neutrino luminosities of stars with different initial masses at different evolutionary stages are simulated. We find that the neutrino flux of a star with 1 M mass at an evolutionary age of 4.61 × 109 yr is consistent with that of the Sun. In general, neutrinos are produced by nuclear reactions, and the neutrino luminosity of stars is about one or two magnitudes lower than the photo luminosity. However, neutrino luminosity can exceed photo luminosity during the helium flash which can occur for stars with a mass lower than 8 M . Although the helium flash does not produce neutrinos, plasma decay, one of the thermal processes, can efficiently make neutrinos during this stage. Due to the high mass-loss rate, a star with a mass of 9 M does not undergo the helium flash. Its neutrinos mainly originate from nuclear reactions until the end of the AGB stage. At the end of the AGB stage, its neutrino luminosity results from plasma decay which is triggered by the gravitational energy release because of the stellar core contracting.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary tracks of massive stars with different rotation and metallicity in neutrino H–R diagram;Monthly Notices of the Royal Astronomical Society;2023-10-09

2. The neutrino emission from thermal processes in very massive stars in the local universe;Monthly Notices of the Royal Astronomical Society;2021-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3