Long-term evolution of magnetic fields in flaring Active Region NOAA 12673

Author:

Muhamad Johan,Nurzaman Muhamad Zamzam,Dani Tiar,Pamutri Arun Relung

Abstract

Abstract During the lifetime of AR 12673, its magnetic field evolved drastically and produced numerous large flares. In this study, using full maps of the Sun observed by the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory, we identified that AR 12673 emerged in decayed AR 12665, which had survived for two solar rotations. Although both ARs emerged at the same location, they possessed different characteristics and different flare productivities. Therefore, it is important to study the long-term magnetic evolution of both ARs to identify the distinguishing characteristics of an AR that can produce large solar flares. We used the Space-weather Helioseismic and Magnetic Imager Active Region Patch data to investigate the evolution of the photospheric magnetic field and other physical properties of the recurring ARs during five Carrington rotations. All these investigated parameters dynamically evolved through a series of solar rotations. We compared the long-term evolution of AR 12665 and AR 12673 to understand the differences in their flare-producing properties. We also studied the relation of the long-term evolution of these ARs with the presence of active longitude. We found that the magnetic flux and complexity of AR 12673 developed much faster than those of AR 12665. Our results confirmed that a strong emerging flux that emerged in the pre-existing AR near the active longitude created a very strong and complex AR that produced large flares.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3