A New Method of Frequency Fluctuation Estimation and IPS Processing Results Based on the Downlink Signal of Tianwen-1

Author:

Liu Yu-Chen,Kong De-Qing,Liu Dong-Hao,Zhu Xin-Ying,Su Yan,Zhang Hong-Bo,Wang Zan

Abstract

Abstract The radio-occultation observations taken by Tianwen-1 are aiming to study the properties of solar wind. A new method of frequency fluctuation (FF) estimation is presented for processing the down-link signals of Tianwen-1 during the occultation period to study the properties of the coronal plasma at the heliocentric distances of 4.48–19 R . Because of low S/N as well as the phase fluctuation phenomena caused by solar activity, a Kalman based on polynomial prediction methods is proposed to avoid the phase locked loop loss lock. A new detrend method based on multi-level iteration correction is proposed to estimate Doppler shift to get more accurate power density spectra of FF in the low frequency region. The data analyze procedure is used to get the properties of the solar corona during the occultation. The method was finally verified at the point when the solar offset is 5.7 R , frequency tracking was successfully performed on data with a carrier-to-noise ratio of about 28 dBHz. The density spectra obtained by the improved method are basically the same when the frequency is greater than 2 mHz, the uncertainty in the result of the rms of the FF obtained by removing the trend term with different order polynomials is less than 3.3%. The data without eliminating interference show a large error for different detrending orders, which justifies the need for an improved approach. Finally, the frequency fluctuation results combined with the information on intensity fluctuation obtained by the new method are compared with the results of the integrated Space Weather Analysis system and theoretical formula, which verifies that the processing results in this paper have a certain degree of credibility.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3