Evolution of High-energy Electron Distribution in Pulsar Wind Nebulae

Author:

Liu Yi-Ming,Zeng Hou-DunORCID,Xin Yu-LiangORCID,Liu Si-Ming,Zhang Yi

Abstract

Abstract In this paper, we analyze the spectral energy distributions of 17 powerful (with a spin-down luminosity greater than 1035 erg s−1) young (with an age less than 15,000 yr) pulsar wind nebulae (PWNe) using a simple time-independent one-zone emission model. Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe, thereby revealing the evolution of high-energy electron distributions within PWNe. Our findings are as follows: (1) The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff. (2) As PWNe evolve, the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5, while the low-energy end spectrum index remains constant near 1.5. (3) There is no apparent correlation between the break energy or cutoff energy and the age of PWNe. (4) The average magnetic field within PWNe decreases with age, leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff, and the age of the PWN. (5) The total electron energy within PWNe remains constant near 2 × 1048 erg, while the total magnetic energy decreases with age.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3