Spectral analysis of χ class data of GRS 1915+105 using TCAF solution

Author:

Banerjee Anuvab,Bhattacharjee Ayan,Debnath Dipak,Chakrabarti Sandip K.

Abstract

Abstract The class variable source GRS 1915+105 exhibits a wide range of time variabilities on timescales of a few seconds to a few days. Depending on the count rates in different energy bands and the nature of the conventional color-color diagram, the variabilities were classified into sixteen classes that were later sequenced in ascending order of Comptonization Efficiency (CE), which is the ratio of power-law and blackbody photons. However, CE estimation is based on an empirical model which does not provide us with a comprehensive picture regarding accretion flow dynamics around the central source. In reality, the accretion flow is comprised of two components: the high angular momentumKeplerian flow in the form of a radiatively efficient disk and a low angular momentumradiatively inefficient sub-Keplerian halo enveloping the disk. These two components contribute differently to the overall flux due to the differences in their radiative efficiencies. Therefore, it is necessary to analyze the spectral behaviors and time variabilities in terms of accretion rates. In χ class, X-ray flux is steady with no significant variation, however various χ subclasses are observed at different X-ray fluxes and variations of count rates across different χ subclasses must be linked to the variation of flow parameters such as the accretion rates, be it the Keplerian disk rate and/or the low angular momentum halo rate. This motivated us to analyze the spectra of the χ class data implementing the physical Two Component Advective Flow (TCAF) solution which directly extracts these two rates from spectral fits. We find that in the χ 2,4 classes, which are reportedly devoid of significant outflows, the spectra could be fitted well applying the TCAF solution alone. In the χ 1,3 classes, which are always linked with outflows, a cutoff power-law model is needed in addition to the TCAF solution. At the same time, the normalization required by this model along with the variation of photon index and exponential roll-off factor provides us with information on the relative dominance of the outflow in the latter two classes. TCAF fit also supplies us with the size and location of the Compton cloud along with its optical depth. Thus by fitting with TCAF, a physical understanding of the flow geometry in different χ classes of GRS 1915+105 has been obtained.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3