Estimating the power spectrum of a discrete cosmic momentum field with fast Fourier transform

Author:

Pan Jun

Abstract

Abstract Fast Fourier transform based estimators are formulated for measuring momentum power spectra, including the auto power spectra of the momentum, the momentum divergence, and the cross spectrum of density fluctuation and momentum divergence. Algorithms using the third order Bettle-Lemarié scaling function to assign discrete objects to regular grids for fast Fourier transform are proposed to clean alias effects. Numerical experiments prove that the implementation can achieve sub-percent precision till close to the Nyquist frequency. The impact of removing bulk flow on the estimation of momentum power spectra is derived theoretically and verified numerically. Subtracting bulk flow has little effects at large scales but might induce meaningful differences in nonlinear regime, and probably it is not necessary to subtract bulk flow for samples which peculiar velocities are exact or sufficiently accurate. Momentum power spectra of dark matter samples fromN-body simulation aremeasured and discussed. As expected, the prediction of the one loop Eulerian perturbation theory agrees with simulation only slightly better than the linear theory at z = 0, but can be applied to higher redshift with improved accuracy. Measurements of simulation data and the one loop Eulerian theory both reveal that the momentum field contains strong rotational part, and there is a large stochastic component in the divergence of momentum which is not correlated with the density field. The three kinds of momentum power spectra have their own characteristics.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3