FAST Observations of an Extremely Active Episode of FRB 20201124A. II. Energy Distribution

Author:

Zhang Yong-KunORCID,Wang Pei,Feng Yi,Zhang Bing,Li Di,Tsai Chao-Wei,Niu Chen-Hui,Luo RuiORCID,Yao Ju-Mei,Zhu Wei-Wei,Han Jin-Lin,Lee Ke-Jia,Zhou De-JiangORCID,Niu Jia-RuiORCID,Jiang Jin-ChenORCID,Wang Wei-Yang,Zhang Chun-Feng,Xu Heng,Wang Bo-Jun,Xu Jiang-Wei

Abstract

Abstract We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during an extremely active episode on UTC 2021 September 25–28 in a series of four papers. In this second paper of the series, we study the energy distribution of 881 bursts (defined as significant signals separated by dips down to the noise level) detected in the first four days of our 19 hr observational campaign spanning 17 days. The event rate initially increased exponentially but the source activity stopped within 24 hr after the 4th day. The detection of 542 bursts in one hour during the fourth day marked the highest event rate detected from one single FRB source so far. The bursts have complex structures in the time-frequency space. We find a double-peak distribution of the waiting time, which can be modeled with two log-normal functions peaking at 51.22 ms and 10.05 s, respectively. Compared with the emission from a previous active episode of the source detected with FAST, the second distribution peak time is smaller, suggesting that this peak is defined by the activity level of the source. We calculate the isotropic energy of the bursts using both a partial bandwidth and a full bandwidth and find that the energy distribution is not significantly changed. We find that an exponentially connected broken-power law function can fit the cumulative burst energy distribution well, with the lower and higher-energy indices being −1.22 ± 0.01 and −4.27 ± 0.23, respectively. Assuming a radio radiative efficiency of η r = 10−4, the total isotropic energy of the bursts released during the four days when the source was active is already 3.9 × 1046 erg, exceeding ∼23% of the available magnetar dipolar magnetic energy. This challenges the magnetar models which invoke an inefficient radio emission (e.g., synchrotron maser models).

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3