A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts

Author:

Ouyed Rachid,Leahy Denis,Koning Nico

Abstract

Abstract By appealing to a quark nova (QN; the explosive transition of a neutron star to a quark star) in the wake of a core-collapse supernova (CCSN) explosion of a massive star, we develop a unified model for long duration gamma-ray bursts (LGRBs) and fast radio bursts (FRBs). The time delay (years to decades) between the SN and the QN, and the fragmented nature (i.e., millions of chunks) of the relativistic QN ejecta are key to yielding a robust LGRB engine. In our model, an LGRB light curve exhibits the interaction of the fragmented QN ejecta with turbulent (i.e., filamentary and magnetically saturated) SN ejecta which is shaped by its interaction with an underlying pulsar wind nebula (PWN). The afterglow is due to the interaction of the QN chunks, exiting the SN ejecta, with the surrounding medium. Our model can fit BAT/XRT prompt and afterglow light curves simultaneously with their spectra, thus yielding the observed properties of LGRBs (e.g., the Band function and the X-ray flares). We find that the peak luminositypeak photon energy relationship (i.e., the Yonetoku law), and the isotropic energy-peak photon energy relationship (i.e., the Amati law) are not fundamental but phenomenological. FRB-like emission in our model results from coherent synchrotron emission (CSE) when the QN chunks interact with non-turbulent weakly magnetized PWN-SN ejecta, where conditions are prone to the Weibel instability. Magnetic field amplification induced by the Weibel instability in the shocked chunk frame sets the bunching length for electrons and pairs to radiate coherently. The resulting emission frequency, luminosity and duration in our model are consistent with FRB data. We find a natural unification of high-energy burst phenomena from FRBs (i.e., those connected to CCSNe) to LGRBs including X-ray flashes (XRFs) and X-ray rich GRBs (XRR-GRBs) as well as superluminous SNe (SLSNe). We find a possible connection between ultra-high energy cosmic rays and FRBs and propose that a QN following a binary neutron star merger can yield a short duration GRB (SGRB) with fits to BAT/XRT light curves.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3