Revealing Double White Dwarf Mergers with Multi-messenger Signals

Author:

Yang He-Wen,Thomas Tam Pak-Hin,Yang Lili

Abstract

Abstract A significant number of double white dwarfs (DWDs) are believed to merge within the Hubble time due to the gravitational wave (GW) emission during their inspiraling phase. The outcome of a DWD system is either a type Ia Supernova as the double-degenerate model, or a massive, long-lasting merger remnant. Expected multi-messenger signals of these events will help us to distinguish detailed merging physical processes. In this work, we aim to provide a generic scenario of DWD merging, investigate the emission of all major messengers, with a focus on GWs and neutrinos. Our goal is to provide some guidance for current and future (collaborative) efforts of multi-messenger observations. Throughout the merging evolution of a DWD system, different messengers (GW, neutrino and electromagnetic wave) will dominate at different times. In this work, we show that DWD merger events located at the distance of 1 kpc can indeed produce detectable signals of GWs and neutrinos. The GW frequency is in 0.3–0.6 Hz band around 10 days before tidal disruption begins. We estimate that in optimistic situations, the neutrino number detected by upcoming detectors such as JUNO and Hyper-Kamiokande can reach O(1) for a DWD merging event at ∼1 kpc.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3