Gravitational Wave Radiation from Newborn Accreting Magnetars

Author:

Cheng Quan,Zheng Xiao-Ping,Fan Xi-Long,Huang Xi

Abstract

Abstract The observed electromagnetic radiation from some long and short gamma-ray bursts, and neutron stars (NSs), and the theoretical models proposed to interpret these observations together point to a very interesting but confusing problem, namely, whether fall-back accretion could lead to dipole field decay of newborn NSs. In this paper, we investigate the gravitational wave (GW) radiation of newborn magnetars with a fall-back disk formed in both the core-collapse of massive stars and the merger of binary NSs. We make a comparison of the results obtained with and without fall-back accretion-induced dipole-field decay (FADD) involved. Depending on the fall-back parameters, initial parameters of newborn magnetars, and models used to describe FADD, FADD may indeed occur in newborn magnetars. Because of the low dipole fields caused by FADD, the newborn magnetars will be spun up to higher frequencies and have larger masses in comparison with the non-decay cases. Thus the GW radiation of newborn accreting magnetars would be remarkably enhanced. We propose that observation of GW signals from newborn magnetars using future GW detectors may help to reveal whether FADD could occur in newborn accreting magnetars. Our model is also applied to the discussion of the remnant of GW170817. From the post-merger GW searching results of Advanced LIGO and Advanced Virgo we cannot confirm the remnant is a low-dipole-field long-lived NS. Future detection of GWs from GW170817-like events using more sensitive detectors may help to clarify the FADD puzzle.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3