Identifying Symbiotic Stars with Machine Learning

Author:

Jia YongleORCID,Guo Sufen,Zhu Chunhua,Li Lin,Ma Mei,Lü Guoliang

Abstract

Abstract Symbiotic stars are interacting binary systems, making them valuable for studying various astronomical phenomena, such as stellar evolution, mass transfer, and accretion processes. Despite recent progress in the discovery of symbiotic stars, a significant discrepancy between the observed population of symbiotic stars and the number predicted by theoretical models. To bridge this gap, this study utilized machine learning techniques to efficiently identify new symbiotic star candidates. Three algorithms (XGBoost, LightGBM, and Decision Tree) were applied to a data set of 198 confirmed symbiotic stars and the resulting model was then used to analyze data from the LAMOST survey, leading to the identification of 11,709 potential symbiotic star candidates. Out of these potential symbiotic star candidates listed in the catalog, 15 have spectra available in the Sloan Digital Sky Survey (SDSS) survey. Among these 15 candidates, two candidates, namely V* V603 Ori and V* GN Tau, have been confirmed as symbiotic stars. The remaining 11 candidates have been classified as accreting-only symbiotic star candidates. The other two candidates, one of which has been identified as a galaxy by both SDSS and LAMOST surveys, and the other identified as a quasar by SDSS survey and as a galaxy by LAMOST survey.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3