Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing

Author:

Li HuiORCID,Li Rong-Wang,Shu Peng,Li Yu-Qiang

Abstract

Abstract Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal. Analyzing light curves to determine attitude is the most commonly used method. In photometric observations, outliers may exist in the obtained light curves due to various reasons. Therefore, preprocessing is required to remove these outliers to obtain high quality light curves. Through statistical analysis, the reasons leading to outliers can be categorized into two main types: first, the brightness of the object significantly increases due to the passage of a star nearby, referred to as “stellar contamination,” and second, the brightness markedly decreases due to cloudy cover, referred to as “cloudy contamination.” The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive. However, we propose the utilization of machine learning methods as a substitute. Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination, achieving F1 scores of 1.00 and 0.98 on a test set, respectively. We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine, then conduct comparative analyses of the results.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3