Design and Application of an S-band Fast Radio Bursts Search Pipeline for the Nanshan 26 m Radio Telescope

Author:

Liu Yan-Ling,Chen Mao-Zheng,Li Jian,Yuan Jian-Ping,Yuen Rai,Liu Zhi-Yong,Yan Hao,Du Wen-Long,Zhai Nan-Nan

Abstract

Abstract Fast radio bursts (FRBs) are among the most studied radio transients in astrophysics, but their origin and radiation mechanism are still unknown. It is a challenge to search for FRB events in a huge amount of observational data with high speed and high accuracy. With the rapid advancement of the FRB research process, FRB searching has changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with specialized equipments. Therefore, establishing a highly efficient and high quality FRB search pipeline is the primary task in FRB research. Deep learning techniques provide new ideas for FRB search processing. We have detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope (NSRT-26m) using the constructed deep learning based search pipeline named dispersed dynamic spectra search (DDSS). Afterwards, we further retrained the deep learning model and applied the DDSS framework to S-band observations. In this paper, we present the FRB observation system and search pipeline using the S-band receiver. We carried out search experiments, and successfully detected the radio bursts from the magnetar SGR J1935+2145 and FRB 20220912A. The experimental results show that the search pipeline can complete the search efficiently and output the search results with high accuracy.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3