Parametric Evolution of Power-law Energy Spectra of Energetic Electrons in the Coronal Loops

Author:

Tang Jian-Fei,Wu De-Jin,Chen Ling,Xu Lei

Abstract

Abstract Fast electron beams (FEBs) are one of the main products of various active events and are ubiquitous in solar, space and cosmic plasmas. They reveal themselves in hard X-ray and radio emissions. The observed characteristics of X-ray and radio emissions sensitively depend on the energy distribution of FEBs, which usually have a power-law energy spectrum. As FEBs travel in the solar atmosphere, their energy distribution can considerably vary due to the interaction with ambient plasmas. Tang et al. investigated the evolution of the energy spectrum of the FEBs traveling along a flare loop and discussed the possible effects on associated hard X-ray (HXR) and radio emissions. Considering the ubiquitous coronal loops in active regions, in the present paper, we investigate the parametric evolution of the energy spectra of FEBs when propagating along coronal loops. Here, we take the sunpot atmospheric model as an approximate coronal loop atmosphere model. The results show that the energy loss has an important impact on the cutoff behavior and energy spectra of FEBs when precipitating in a coronal loop with density ratio n b /n e = 0.01. The initially single power-law spectrum with a steepness cutoff can evolve into a more complex double power-law spectrum or two “knees” power-law spectrum with a flattened steepness cutoff behavior or saturation cutoff behavior. Our calculations also demonstrate that the energy spectrum evolution is not obvious if n b /n 0 = 0.001 as Tang et al. asserted. The present results are helpful for a more comprehensive understanding of the dynamic spectra of HXR and radio emissions from FEBs.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3