Hypercritical Accretion for Black Hole High Spin in Cygnus X-1

Author:

Qin Ying,Shu Xinwen,Yi Shuangxi,Wang Yuan-Zhu

Abstract

Abstract Recent observations of AdLIGO and Virgo have shown that the spin measurements in binary black hole (BH) systems are typically small, which is consistent with the predictions by the classical isolated binary evolution channel. In this standard formation channel, the progenitor of the first-born BH is assumed to have efficient angular momentum transport. The BH spins in high-mass X-ray binaries (HMXBs), however, have consistently been found to be extremely high. In order to explain the high BH spins, the inefficient angular momentum transport inside the BH progenitor is required. This requirement, however, is incompatible with the current understanding of conventional efficient angular momentum transport mechanism. We find that this tension can be highly alleviated as long as the hypercritical accretion is allowed. We show that, for a case study of Cygnus X-1, the hypercritical accretion cannot only be a good solution for the inconsistent assumption upon the angular momentum transport within massive stars, but match its other properties reported recently.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3