Probing dark contents in globular clusters with timing effects of pulsar acceleration

Author:

Wang Li-Chun,Xie Yi

Abstract

Abstract We investigate pulsar timing residuals due to the coupling effect of the pulsar transverse acceleration and the Römer delay. The effect is relatively small and usually negligible. Only for pulsars in globular clusters, it is possibly important. The maximum residual amplitude, which is from the pulsar near the surface of the core of the cluster, is about tens of nanoseconds, and may hardly be identified for most globular clusters currently. However, an intermediate-mass black hole in the center of a cluster can apparently increase the timing residual magnitudes. Particularly for pulsars in the innermost core region, their residual magnitudes may be significant. The high-magnitude residuals, which are above critical lines of each cluster, are strong evidence for the presence of a black hole or dark remnants of comparable total mass in the center of the cluster. We also explored the timing effects of line-of-sight accelerations for the pulsars. The distribution of measured line-of-sight accelerations are simulated with a Monte Carlo method. Two-dimensional Kolmogorov-Smirnov tests are performed to reexamine the consistency of distributions of the simulated and reported data for various values of parameters of the clusters. It is shown that the structure parameters of Terzan 5 can be constrained well by comparing the distribution of measured line-of-sight accelerations with the distributions from Monte Carlo simulations. We find that the cluster has an upper limit on the central black hole/dark remnant mass of ∼ 6000 M .

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evidence of dark contents in the centre of NGC 6517;Monthly Notices of the Royal Astronomical Society;2023-11-22

2. Inside MOND: testing gravity with stellar accelerations;Journal of Cosmology and Astroparticle Physics;2023-11-01

3. Revisiting the Evidence for an Intermediate-mass Black Hole in the Center of NGC 6624 with Simulations;Research in Astronomy and Astrophysics;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3