Large-scale CO (J = 1–0) Observations toward the M120.1+3.0 Molecular Cloud: A Filament with a Chain of Starburst Clusters

Author:

Sun LiORCID,Chen XuepengORCID,Feng Jiancheng,Fang Min,Zhang Shiyu,Guo WeihuaORCID,Sun YanORCID,Su YangORCID,Zhang ShaoboORCID,Zhang MiaomiaoORCID,Wang Xiao-LongORCID,Yan Qing-Zeng,Zhou XinORCID,Yang JiORCID

Abstract

Abstract We present large-scale (2° × 2°) observations toward the molecular cloud M120.1+3.0, using 12CO, 13CO and C18O (J = 1 − 0) data from the Purple Mountain Observatory 13.7 m millimeter telescope. The distance of the cloud is measured to be ∼1.1 kpc. Using the 13CO data, we identify a main filament F1 and two sub-filaments F2 and F3 in the cloud, which together show a “hub-filament” structure. Filaments F1 and F2 are thermally supercritical. Furthermore, F1 displays clear localized systematic motions in the 13CO position–velocity diagram, which could be explained by accretion along the filament. The mean estimated accretion rate is ∼132 M Myr−1. Approximately 150 13CO clumps are identified in the cloud, of which 39 are gravitationally bound. Most of these virialized clumps are well distributed along the supercritical filaments F1 and F2. Based on the complementary infrared and optical data, we identify ∼186 young stellar objects in the observed area and extract five clusters within the dense ridge of F1. The calculated star formation rate (SFR) surface densities (ΣSFR) in the clusters range from 1.4 to 2.5 M Myr−1 pc−2, with a mean value of ∼2.0 M Myr−1 pc−2. We therefore regard them as mini-starburst cluster candidates. The comparison between ΣSFR and column density N gas along the skeleton of F1 suggests that star formation is closely related to the dense gas in the cloud. Along the main filament F1, five bipolar outflows are also found. All these results indicate intense star-forming activities in the M120.1+3.0 molecular cloud.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3