Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering

Author:

Soker Noam,Kaplan Noa

Abstract

Abstract We apply the jet-powered ILOT scenario to two recently studied intermediate luminosity optical transients (ILOTs), and find the relevant shell mass and jets’ energy that might account for the outbursts of these ILOTs. In the jet-powered ILOT scenario, an accretion disk around one of the stars of a binary system launches jets. The interaction of the jets with a previously ejected slow shell converts kinetic energy to thermal energy, part of which is radiated away. We apply two models of the jet-powered ILOT scenario. In the spherical shell model, the jets accelerate a spherical shell, while in the cocoon toy model the jets penetrate into the shell and inflate hot bubbles, the cocoons. We find consistent results. For the ILOT (ILRT: intermediate luminosity red transient) SNhunt120 we find the shell mass and jets’ energy to be M s ≃ 0.5 − 1 M and E 2j ≃ 5 × 1047 erg, respectively. The jets’ half opening angle is αj ≃ 30° − 60°. For the second peak of the ILOT (luminous red nova) AT 2014ej we find these quantities to be M s ≃ 1 − 2 M and E 2j ≃ 1.5 × 1048 erg, with αj ≃ 20° − 30°. The models cannot tell whether these ILOTs were powered by a stellar merger that leaves one star, or by mass transfer where both stars survived. In both cases the masses of the shells and energies of the jets suggest that the binary progenitor system was massive, with a combined mass of M 1 + M 2 ≳ 10 M .

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3