The Environment and Star Formation around the Infrared Bubble N 13

Author:

Zhou Dong-Dong,Zhou Jian-Jun,Wu Gang,Esimbek Jarken,Xu Ye

Abstract

Abstract Infrared bubbles provide a unique opportunity to study the interactions between massive stars and surrounding material. We conduct a multi-wavelength study on the environment and star formation around an infrared bubble N 13. Three dust clumps and two molecular clumps are identified around N 13, which are all distributed on the layer. Young stellar objects (YSOs) are carefully searched using infrared colors and YSO candidates of WISE and Gaia DR2, and three Class I/II YSOs are found in N 13. In addition, four O-type stars identified in N 13 are probably the exciting stars. The dynamical and fragmentation ages of N 13 are 0.32–0.35 and 1.37–2.80 Myr respectively, which suggest that the radiation-driven implosion model may be dominant in N 13. By comparing the small-size bubble N 13 (R ∼ 1.9 pc) and the larger-size bubble G15.684-0.29 (R ∼ 15.7 pc) we found that star formation activity is more active in the large-size bubble. Brief comparisons of ten bubbles show that small-size bubbles have a small ratio of kinetic age versus the fragmentation time. Triggering star formation may be more active in bubbles with larger ratio between kinetic and fragmentation ages. Furthermore, the collect and collapse mechanism may play the dominant role in the large-size ones.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3