Tracklet-to-object Matching for Climbing Starlink Satellites through Recursive Orbit Determination and Prediction

Author:

Li BinORCID,Liu Lei,Sang Ji-Zhang

Abstract

Abstract Concerns for the collision risk involving Starlink satellites have motivated the interest in obtaining their accurate orbit knowledge. However, accurate orbit determination (OD) and prediction (OP) of Starlink satellites confront two main challenges: mismatching or missed matching of sparse tracklets to maneuvering satellites, and unknown or unmodeled orbit maneuvers. How to exactly associate a tracklet to the right satellite is the primary issue, since a maneuvering satellite does not follow the naturally evolving orbit during the maneuvering, while more tracklets are needed for developing an accurate orbit maneuver model. If these two challenges are not well addressed, it may lead to catalog maintenance failure or even loss of objects. This paper proposes a method to correctly match tracklets to the climbing Starlink satellites. It is based on the recursive OD and OP, in which the orbit maneuver is modeled and the thrust is estimated, such that the subsequent OP accuracy guarantees the correct match of tracklets shortly after the OD time. Experiments with climbing Starlink satellites demonstrate that the tracklets within three days of the last TLE (two-line element) are all correctly matched to the right satellites. With the matched tracklets, the thrust accelerations of climbing Starlink satellites can be precisely estimated through an orbit control approach, and the position prediction accuracy over 48 hours is at the level of a few kilometers, providing accurate orbit knowledge for reliable collision warning involving Starlink satellites.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3