Neutrino mass bounds from confronting an effective model with BOSS Lyman-α data

Author:

Garny Mathias,Konstandin Thomas,Sagunski Laura,Viel Matteo

Abstract

Abstract We present an effective model for the one-dimensional Lyman-α flux power spectrum far above the baryonic Jeans scale. The main new ingredient is constituted by a set of two parameters that encode the impact of small, highly non-linear scales on the one-dimensional power spectrum on large scales, where it is measured by BOSS. We show that, by marginalizing over the model parameters that capture the impact of the intergalactic medium, the flux power spectrum from both simulations and observations can be described with high precision. The model displays a degeneracy between the neutrino masses and the (unknown, in our formalism) normalization of the flux power spectrum. This degeneracy can be lifted by calibrating one of the model parameters with simulation data, and using input from Planck CMB data. We demonstrate that this approach can be used to extract bounds on the sum of neutrino masses with comparably low numerical effort, while allowing for a conservative treatment of uncertainties from the dynamics of the intergalactic medium. An explorative analysis yields an upper bound of 0.16eV at 95% C.L. when applied to BOSS data at 3 ≤ z ≤ 4.2. We also forecast that if the systematic and statistical errors will be reduced by a factor two the upper bound will become 0.1eV at 95% C.L, and 0.056eV when assuming a 1% error.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The 3D Lyman-α forest power spectrum from eBOSS DR16;Monthly Notices of the Royal Astronomical Society;2024-08-29

2. Cosmological constraints from the eBOSS Lyman-α forest using the PRIYA simulations;Journal of Cosmology and Astroparticle Physics;2024-07-01

3. Measurement of the small-scale 3D Lyman-α forest power spectrum;Journal of Cosmology and Astroparticle Physics;2024-05-01

4. Unveiling dark matter free streaming at the smallest scales with the high redshift Lyman-alpha forest;Physical Review D;2024-02-08

5. Lyman alpha forest power spectrum in effective field theory;Physical Review D;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3