Gravitational wave constraints on the primordial black hole dominated early universe

Author:

Domènech Guillem,Lin Chunshan,Sasaki Misao

Abstract

Abstract We calculate the gravitational waves (GWs) induced by the density fluctuations due to the inhomogeneous distribution of primordial black holes (PBHs) in the case where PBHs eventually dominate and reheat the universe by Hawking evaporation. The initial PBH density fluctuations are isocurvature in nature. We find that most of the induced GWs are generated right after evaporation, when the universe transits from the PBH dominated era to the radiation dominated era and the curvature perturbation starts to oscillate wildly. The strongest constraint on the amount of the produced GWs comes from the big bang nucleosynthesis (BBN). We improve previous constraints on the PBH fraction and find that it cannot exceed 10-4. Furthermore, this maximum fraction decreases as the mass increases and reaches 10-12 for MPBH∼ 5×108 g, which is the largest mass allowed by the BBN constraint on the reheating temperature. Considering that PBH may cluster above a given clustering scale, we also derive a lower bound on the scale of clustering. Interestingly, the GW spectrum for MPBH∼ 104 -108 g enters the observational window of LIGO and DECIGO and could be tested in the future. Although we focus on the PBH dominated early universe in this paper, our methodology is applicable to any model with early isocurvature perturbation.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference78 articles.

1. Gravitationally collapsed objects of very low mass;Hawking;Mon. Not. Roy. Astron. Soc.,1971

2. Black holes in the early Universe;Carr;Mon. Not. Roy. Astron. Soc.,1974

3. The behaviour of point masses in an expanding cosmological substratum;Meszaros;Astron. Astrophys.,1974

4. The Primordial black hole mass spectrum;Carr;Astrophys. J.,1975

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3