The Hubble tension in light of the Full-Shape analysis of Large-Scale Structure data

Author:

D'Amico Guido,Senatore Leonardo,Zhang Pierre,Zheng Henry

Abstract

Abstract The disagreement between direct late-time measurements of the Hubble constant from the SH0ES collaboration, and early-universe measurements based on the ΛCDM model from the Planck collaboration might, at least in principle, be explained by new physics in the early universe. Recently, the application of the Effective Field Theory of Large-Scale Structure to the full shape of the power spectrum of the SDSS/BOSS data has revealed a new, rather powerful, way to measure the Hubble constant and the other cosmological parameters from Large-Scale Structure surveys. In light of this, we analyze two models for early universe physics, Early Dark Energy and Rock 'n' Roll, that were designed to significantly ameliorate the Hubble tension. Upon including the information from the full shape to the Planck, BAO, and Supernovae measurements, we find that the degeneracies in the cosmological parameters that were introduced by these models are well broken by the data, so that these two models do not significantly ameliorate the tension.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3