Structure of stellar remnants with coupling to a light scalar

Author:

Gao Christina,Stebbins Albert

Abstract

Abstract In this paper, we study how a Yukawa coupling of the Standard Model fermions to a light scalar field affects the stellar structure of cold stellar remnants such as neutron stars. We elucidate the stellar structure phenomenology using a simple model of a massive scalar coupled to a single dominant fermion with no other interactions. For a broad scalar mass range (10-10 eV ≪ mϕ ≪ 103 eV for neutron stars) we show that the equation-of-state and stellar structure depends on the effective coupling ℊ = gf mf /mϕ , where gf is the Yukawa coupling, mf is the fermion mass, and mϕ is the scalar kinematic mass at nuclear densities. If ℊ > 𝒪(1) the Yukawa coupled matter exhibits various anomalous behaviors including hydrodynamic instability, negative pressure, distinct phases (soft and hard) of matter with sharp phase boundaries between them and with the vacuum. These anomalies can lead to stars consisting of only soft, only hard, or a hybrid of soft and hard matter. These stars can have either sign for the slope of the mass-radius relation, anomalously large and small masses, gaps in allowed radii, multiple radii for the same mass, thin crusts and radiate anomalously large amounts of energy when they form (in the form of neutrinos for neutron stars). To the extent that these anomalies have not and/or will not be observed limits the effective coupling to ℊ < 𝒪(1). We argue this phenomenology is generic to stars with Yukawa coupled matter.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3