A forecast of using fast radio burst observations to constrain holographic dark energy

Author:

Qiu Xing-Wei,Zhao Ze-Wei,Wang Ling-Feng,Zhang Jing-Fei,Zhang Xin

Abstract

Abstract Recently, about five hundred fast radio bursts (FRBs) detected by CHIME/FRB Project have been reported. The vast amounts of data would make FRBs a promising low-redshift cosmological probe in the forthcoming years, and thus the issue of how many FRBs are needed for precise cosmological parameter estimation in different dark energy models should be detailedly investigated. Different from the usually considered w(z)-parameterized models in the literature, in this work we investigate the holographic dark energy (HDE) model and the Ricci dark energy (RDE) model, which originate from the holographic principle of quantum gravity, using the simulated localized FRB data as a cosmological probe for the first time. We show that the Hubble constant H 0 can be constrained to about 2% precision in the HDE model with the Macquart relation of FRB by using 10000 accurately-localized FRBs combined with the current CMB data, which is similar to the precision of the SH0ES value. Using 10000 localized FRBs combined with the CMB data can achieve about 6% constraint on the dark-energy parameter c in the HDE model, which is tighter than the current BAO data combined with CMB. We also study the combination of the FRB data and another low-redshift cosmological probe, i.e. gravitational wave (GW) standard siren data, with the purpose of measuring cosmological parameters independent of CMB. Although the parameter degeneracies inherent in FRB and in GW are rather different, we find that more than 10000 FRBs are demanded to effectively improve the constraints in the holographic dark energy models.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3