The effect of dark matter discreteness on light propagation

Author:

Koksbang Sofie Marie,Räsänen Syksy

Abstract

Abstract Light propagation in cosmology is usually studied in the geometrical optics approximation which requires the spacetime curvature to be much smaller than the light wavenumber. However, for non-fuzzy particle dark matter the curvature is concentrated in widely separated spikes at particle location. If the particle mass is localised within a Compton wavelength, then for masses ≳104 GeV the curvature is larger than the energy of CMB photons. We consider a post-geometrical optics approximation that includes curvature. Photons gain a gravity-induced mass when travelling through dark matter, and light paths are not null nor geodesic. We find that the correction to the redshift is negligible. For the angular diameter distance, we show how the small average density emerges from the large local spikes when integrating along the light ray. We find that there can be a large correction to the angular diameter distance even for photon energies much larger than the curvature. This may allow to set a strong upper limit on the mass of dark matter particles. We discuss open issues related to the validity of our approximations.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3