Blandford-Znajek monopole expansion revisited: novel non-analytic contributions to the power emission

Author:

Camilloni Filippo,Dias Oscar J.C.,Grignani Gianluca,Harmark Troels,Oliveri Roberto,Orselli Marta,Placidi Andrea,Santos Jorge E.

Abstract

Abstract The Blandford and Znajek (BZ) split-monopole serves as an important theoretical example of the mechanism that can drive the electromagnetic extraction of energy from Kerr black holes. It is constructed as a perturbative low spin solution of Force Free Electrodynamics (FFE). Recently, Armas et al. put this construction on a firmer footing by clearing up issues with apparent divergent asymptotics. This was accomplished by resolving the behavior around the outer light surface, a critical surface of the FFE equations. Building on this, we revisit the BZ perturbative expansion, and extend the perturbative approach to higher orders in the spin parameter of the Kerr black hole. We employ matched-asymptotic-expansions and semi-analytic techniques to extend the split-monopole solution to the sixth-order in perturbation theory. The expansion necessarily includes novel logarithmic contributions in the spin parameter. We show that these higher order terms result in non-analytic contributions to the power and angular momentum output. In particular, we compute for the first time the perturbative contributions to the energy extraction at seventh- and eighth-order in the spin parameter. The resulting formula for the energy extraction improves the agreement with numerical simulations at finite spin. Moreover, we present a novel numerical procedure for resolving the FFE equations across the outer light surface, resulting in significantly faster convergence and greater accuracy, and extend this to higher orders as well. Finally, we include a general discussion of light surfaces as critical surfaces of the FFE equations.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3