Quasinormal modes and Hawking radiation sparsity of GUP corrected black holes in bumblebee gravity with topological defects

Author:

Gogoi Dhruba Jyoti,Dev Goswami Umananda

Abstract

Abstract We have obtained the Generalized Uncertainty Principle (GUP) corrected de Sitter and anti-de Sitter black hole solutions in bumblebee gravity with a topological defect. We have calculated the scalar, electromagnetic and gravitational quasinormal modes for the both vanishing and non-vanishing effective cosmological constant using Padé averaged sixth order WKB approximation method. Apart from this, the time evolutions for all three perturbations are studied, and quasinormal modes are calculated using the time domain profile. We found that the first order and second order GUP parameters α and β, respectively have opposite impacts on the quasinormal modes. The study also finds that the presence of a global monopole can decrease the quasinormal frequencies and the decay rate significantly. On the other hand, Lorentz symmetry violation has noticeable impacts on the quasinormal frequencies and the decay rate. We have studied the greybody factors, power spectrum and sparsity of the black hole with the vanishing effective cosmological constant for all the three perturbations. The presence of Lorentz symmetry breaking and the GUP parameter α decrease, while other GUP parameter β and the presence of global monopole increase the probability of Hawking radiation to reach the spatial infinity. The presence of Lorentz violation can make the black holes less sparse, while the presence of a global monopole can increase the sparsity of the black holes. Moreover, we have seen that the black hole area quantization rule is modified by the presence of Lorentz symmetry breaking.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3