Measuring the inflaton coupling in the CMB

Author:

Drewes Marco

Abstract

AbstractWe study the perspectives to extract information about the microphysical parameters that governed the reheating process after cosmic inflation from CMB data. We identify conditions under which the inflaton coupling to other fields can be constrained for a given model of inflation without having to specify the details of the particle physics theory within which this model is realised. This is possible when the effective potential during reheating is approximately parabolic, and when the coupling constants are smaller than an upper bound that is determined by the ratios between the inflaton mass and the Planck mass or the scale of inflation. We consider scalar, Yukawa, and axion-like interactions and estimate that these conditions can be fulfilled if the inflaton coupling is comparable to the electron Yukawa coupling or smaller, and if the inflaton mass is larger than 105GeV. Constraining the order of magnitude of the coupling constant requires measuring the scalar-to-tensor ratio at the level of 10-3, which is possible with future CMB observatories. Such a measurement would provide an important clue to understand how a given model of inflation may be embedded into a more fundamental theory of nature.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMB imprints of high scale non-thermal leptogenesis;Physics Letters B;2024-01

2. Measuring inflaton couplings via dark radiation as ΔNeff in CMB;Physical Review D;2023-09-25

3. WIMPs, FIMPs, and Inflaton phenomenology via reheating, CMB and ∆Neff;Journal of High Energy Physics;2023-09-04

4. Gravitational wave from graviton Bremsstrahlung during reheating;Journal of Cosmology and Astroparticle Physics;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3