Vacuum energy and renormalization of the field-independent term

Author:

Márián I.G.,Jentschura U.D.,Defenu N.,Trombettoni A.,Nándori I.

Abstract

Abstract Due to its construction, the nonperturbative renormalization group (RG) evolution of the constant, field-independent term (which is constant with respect to field variations but depends on the RG scale k) requires special care within the Functional Renormalization Group (FRG) approach. In several instances, the constant term of the potential has no physical meaning. However, there are special cases where it receives important applications. In low dimensions (d = 1), in a quantum mechanical model, this term is associated with the ground-state energy of the anharmonic oscillator. In higher dimensions (d = 4), it is identical to the Λ term of the Einstein equations and it plays a role in cosmic inflation. Thus, in statistical field theory, in flat space, the constant term could be associated with the free energy, while in curved space, it could be naturally associated with the cosmological constant. It is known that one has to use a subtraction method for the quantum anharmonic oscillator in d = 1 to remove the k 2 term that appears in the RG flow in its high-energy (UV) limit in order to recover the correct results for the ground-state energy. The subtraction is needed because the Gaussian fixed point is missing in the RG flow once the constant term is included. However, if the Gaussian fixed point is there, no further subtraction is required. Here, we propose a subtraction method for k 4 and k 2 terms of the UV scaling of the RG equations for d = 4 dimensions if the Gaussian fixed point is missing in the RG flow with the constant term. Finally, comments on the application of our results to cosmological models are provided.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3