Fifth forces and broken scale symmetries in the Jordan frame

Author:

Copeland Edmund J.,Millington Peter,Sevillano Muñoz Sergio

Abstract

Abstract We study the origin of fifth forces in scalar-tensor theories of gravity in the so-called Jordan frame, where the modifications to the gravitational sector are manifest. We focus on theories of Brans-Dicke type in which an additional scalar field is coupled directly to the Ricci scalar of General Relativity. We describe how the necessary diffeomorphism invariance of the modified gravitational sector leads to a modification of the usual gauge fixing term (for the harmonic gauge), as compared to Einstein gravity. This allows us to perform a consistent linearization of the gravitational sector in the weak-field limit, which gives rise to a kinetic mixing between the non-minimally coupled scalar field and the graviton. It is through this mixing that a fifth force can arise between matter fields. We are then able to compute the matrix elements for fifth-force exchanges directly in the Jordan frame, without the need to perform a conformal transformation to the so-called Einstein frame, wherein the gravitational sector is of Einstein-Hilbert form. We obtain results that are in agreement with the equivalent Einstein-frame calculations and illustrate, still in the Jordan frame, the pivotal role that sources of explicit scale symmetry breaking in the matter sector play in admitting fifth-force couplings.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference70 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FeynMG: A FeynRules extension for scalar-tensor theories of gravity;Computer Physics Communications;2024-03

2. Higgs‐induced screening mechanisms in scalar‐tensor theories;Annals of the New York Academy of Sciences;2023-12-22

3. Hubble tension and fifth forces;Physical Review D;2023-12-18

4. Fifth forces and frame invariance;Physical Review D;2023-01-13

5. The cosmological constant as a boundary term;Journal of High Energy Physics;2022-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3