Duality-symmetric axion electrodynamics and haloscopes of various geometries

Author:

Le Dai-Nam,Hoang Le Phuong,Xuan Cao Binh

Abstract

Abstract Within the dual symmetric point of view, the theory for seeking axion dark matter via haloscope experiments is derived by exactly solving the dual symmetric axion electrodynamics equation. Notwithstanding that the conventional theory of axion electrodynamics presented in [9,11] is more commonly used in haloscope theory, we show that the dual symmetric axion electrodynamics has more advantages to apply into haloscope theory. First, the dual symmetric and conventional perspective of axion electrodynamics coincide under long-wavelength approximation. Moreover, dual symmetric theory can obtain an exact analytical expression of the axion-induced electromagnetic field for any states of axion. This solution has been used in conventional theory for long-wavelength approximation. The difference between two theories can occur in directional axion detection or electric sensing haloscopes. For illustrative purposes, we consider the various type of resonant cavities: cylindrical solenoid, spherical solenoid, two-parallel-sheet cavity, toroidal solenoid with a rectangular cross-section, and with a circular cross-section. The resonance of the axion-induced signal as well as the ratio of the energy difference over the stored energy inside the cavity are investigated in these types of cavity.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference44 articles.

1. Existence and Nature of Dark Matter in the Universe;Trimble;Ann. Rev. Astron. Astrophys.,1987

2. The Not So Harmless Axion;Dine;Phys. Lett. B,1983

3. A Cosmological Bound on the Invisible Axion;Abbott;Phys. Lett. B,1983

4. Cosmology of the Invisible Axion;Preskill;Phys. Lett. B,1983

5. Formation of Galaxies and Large Scale Structure with Cold Dark Matter;Blumenthal;Nature,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-standard axion electrodynamics and the dual Witten effect;Journal of High Energy Physics;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3