Cosmological constraints on the gravitational constant

Author:

Ballardini Mario,Finelli Fabio,Sapone Domenico

Abstract

Abstract We study the variation of the gravitational constant on cosmological scales in scalar-tensor theories of gravity. We focus on the simplest models of scalar-tensor theories with a coupling to the Ricci scalar of the form F(σ) = N 2 pl + ξσ 2, such as extended Jordan-Brans-Dicke (N pl = 0), or a non-minimally coupled scalar field with N pl = M pl, which permits the gravitational constant to vary self-consistently in time and space. In addition, we allow the effective gravitational constant on cosmological scales to differ from the Newton's measured constant G, i.e. G eff(z = 0) = G(1+Δ)2. We study the impact of this imbalance Δ jointly with the coupling ξ into anisotropies of the cosmic microwave background and matter power spectrum at low-redshift. Combining the information from Planck 2018 CMB temperature, polarization and lensing, together with a compilation of BAO measurements from the release DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS), we constrain the imbalance to Δ = -0.022 ± 0.023 (68% CL) and the coupling parameter to 103 ξ < 0.82 (95% CL) for Jordan-Brans-Dicke and for a non-minimally coupled scalar field with F(σ) = M 2 pl + ξσ 2 we constrain the imbalance to Δ > -0.018 (< 0.021) and the coupling parameter to ξ < 0.089 (ξ > - 0.041) both at 95% CL. With current data, we observe that the degeneracy between Δ, the coupling ξ to the Ricci scalar, and H 0 allows for a larger value of the Hubble constant increasing the consistency between the distance-ladder measurement of the Hubble constant from supernovae type Ia by the SH0ES team and its value inferred by CMB data. We also study how future cosmological observations can constrain the gravitational Newton's constant. Future data such as the combination of CMB anisotropies from LiteBIRD and CMB-S4, and large-scale structures galaxy clustering from DESI and galaxy shear from LSST reduce the uncertainty in Δ to σ(Δ) ≃ 0.004.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3