Author:
Aoki Katsuki,Gorji Mohammad Ali,Mukohyama Shinji,Takahashi Kazufumi
Abstract
Abstract
We investigate a systematic formulation of vector-tensor theories based on the effective field theory (EFT) approach. The input of our EFT is that the spacetime symmetry is spontaneously broken by the existence of a preferred timelike direction in accordance with the cosmological principle. After clarifying the difference of the symmetry breaking pattern from the conventional EFT of inflation/dark energy, we find an EFT description of vector-tensor theories around the cosmological background. This approach not only serves as a unified description of vector-tensor theories but also highlights universal differences between the scalar-tensor theories and the vector-tensor theories. The theories having different symmetry breaking patterns are distinguished by a phenomenological function and consistency relations between the EFT coefficients. We study the linear cosmological perturbations within our EFT framework and discuss the characteristic properties of the vector-tensor theories in the context of dark energy. In particular, we compute the effective gravitational coupling and the slip parameter for the matter density contrast in terms of the EFT coefficients.
Subject
Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献