Dark photon stars: formation and role as dark matter substructure

Author:

Gorghetto Marco,Hardy Edward,March-Russell John,Song Ningqiang,West Stephen M.

Abstract

Abstract Any new vector boson with non-zero mass (a 'dark photon' or 'Proca boson') that is present during inflation is automatically produced at this time from vacuum fluctuations and can comprise all or a substantial fraction of the observed dark matter density, as shown by Graham, Mardon, and Rajendran. We demonstrate, utilising both analytic and numerical studies, that such a scenario implies an extremely rich dark matter substructure arising purely from the interplay of gravitational interactions and quantum effects. Due to a remarkable parametric coincidence between the size of the primordial density perturbations and the scale at which quantum pressure is relevant, a substantial fraction of the dark matter inevitably collapses into gravitationally bound solitons, which are fully quantum coherent objects. The central densities of these 'dark photon star', or 'Proca star', solitons are typically a factor 106 larger than the local background dark matter density, and they have characteristic masses of 10-16 M (10-5 eV/m)3/2, where m is the mass of the vector. During and post soliton production a comparable fraction of the energy density is initially stored in, and subsequently radiated from, long-lived quasi-normal modes. Furthermore, the solitons are surrounded by characteristic 'fuzzy' dark matter halos in which quantum wave-like properties are also enhanced relative to the usual virialized dark matter expectations. Lower density compact halos, with masses a factor of ∼ 105 greater than the solitons, form at much larger scales. We argue that, at minimum, the solitons are likely to survive to the present day without being tidally disrupted. This rich substructure, which we anticipate also arises from other dark photon dark matter production mechanisms, opens up a wide range of new direct and indirect detection possibilities, as we discuss in a companion paper.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference124 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3