Unlocking the synergy between CMB spectral distortions and anisotropies

Author:

Fu Hao,Lucca Matteo,Galli Silvia,Battistelli Elia S.,Hooper Deanna C.,Lesgourgues Julien,Schöneberg Nils

Abstract

Abstract Measurements of the cosmic microwave background (CMB) spectral distortions (SDs) will open a new window on the very early universe, providing new information complementary to that gathered from CMB temperature and polarization anisotropies. In this paper, we study their synergy as a function of the characteristics of the considered experiments. In particular, we examine a wide range of sensitivities for possible SD measurements, spanning from FIRAS up to noise levels 1000 times better than PIXIE, and study their constraining power when combined with current or future CMB anisotropy experiments such as Planck or LiteBIRD plus CMB-S4. We consider a number of different cosmological models such as the ΛCDM, as well as its extensions with the running of the scalar spectral index, the decay or the annihilation of dark matter (DM) particles. While upcoming CMB anisotropy experiments will be able to decrease the uncertainties on inflationary parameters such as As and ns by about a factor 2 in the ΛCDM case, we find that an SD experiment 100 times more sensitive than PIXIE (comparable to the proposed Super-PIXIE satellite) could potentially further contribute to constrain these parameters. This is even more significant in the case of the running of the scalar spectral index. Furthermore, as expected, constraints on DM particles decaying at redshifts probed by SDs will improve by orders of magnitude even with an experiment 10 times worse than PIXIE as compared to CMB anisotropies or Big Bang Nucleosynthesis bounds. On the contrary, DM annihilation constraints will not significantly improve over CMB anisotropy measurements. Finally, we forecast the constraints obtainable with sensitivities achievable either from the ground or from a balloon.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference70 articles.

1. Planck 2018 results. VI. Cosmological parameters;Aghanim;Astron. Astrophys.,2020

2. Spectral Distortions of the CMB as a probe of inflation, recombination, structure formation and particle physics: Astro2020 science white paper;Chluba;Bull. Am. Astron. Soc.,2019

3. The synergy between CMB spectral distortions and anisotropies;Lucca;JCAP,2020

4. The interaction of matter and radiation in a hot-model universe;Zeldovich;Astrophys. Space Sci.,1969

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3