Author:
Martin Jérôme,Pinol Lucas
Abstract
Abstract
The robustness of multi-field inflation to the physics of reheating is investigated. In order to carry out this study, reheating is described in detail by means of a formalism which tracks the evolution of scalar fields and perfect fluids in interaction (the inflatons and their decay products). This framework is then used to establish the general equations of motion of the background and perturbative quantities controlling the evolution of the system during reheating. Next, these equations are solved exactly by means of a new numerical code.
Moreover, new analytical techniques, allowing us to interpret and approximate these solutions, are developed. As an illustration of a physical prediction that could be affected by the micro-physics of reheating, the amplitude of non-adiabatic perturbations in double inflation is considered. It is found that ignoring the fine-structure of reheating, as usually done in the standard approach, can lead to differences as big as ∼ 50%, while our semi-analytic estimates can reduce this error to ∼ 10%. We conclude that, in multi-field inflation, tracking the perturbations through the details of the reheating process is important and, to achieve good precision, requires the use of numerical calculations.
Subject
Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献