Opening the reheating box in multifield inflation

Author:

Martin Jérôme,Pinol Lucas

Abstract

Abstract The robustness of multi-field inflation to the physics of reheating is investigated. In order to carry out this study, reheating is described in detail by means of a formalism which tracks the evolution of scalar fields and perfect fluids in interaction (the inflatons and their decay products). This framework is then used to establish the general equations of motion of the background and perturbative quantities controlling the evolution of the system during reheating. Next, these equations are solved exactly by means of a new numerical code. Moreover, new analytical techniques, allowing us to interpret and approximate these solutions, are developed. As an illustration of a physical prediction that could be affected by the micro-physics of reheating, the amplitude of non-adiabatic perturbations in double inflation is considered. It is found that ignoring the fine-structure of reheating, as usually done in the standard approach, can lead to differences as big as ∼ 50%, while our semi-analytic estimates can reduce this error to ∼ 10%. We conclude that, in multi-field inflation, tracking the perturbations through the details of the reheating process is important and, to achieve good precision, requires the use of numerical calculations.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3