Flat-sky angular power spectra revisited

Author:

Gao ZuchengORCID,Vlah ZvonimirORCID,Challinor AnthonyORCID

Abstract

Abstract We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. For the case of projections with broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the commonly adopted Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables in a flat ΛCDM universe. In the case of galaxy clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the cases of lensing, we show on the full-sky that the angular power spectrum of the lensing convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales. We further analyse the clustering and lensing angular power spectra by isolating the projection effects due to the observable- and survey-specific window functions, separating them from the effects due to integration along the line of sight and unequal-time mixing in the 3D power spectrum. All of the angular power spectrum results presented in this paper are obtained using a Python code implementation, which we make publicly available.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference52 articles.

1. Cosmology and fundamental physics with the Euclid satellite;Amendola;Living Rev. Rel.,2018

2. The DESI Experiment Part I: Science,Targeting, and Survey Design;DESI Collaboration,2016

3. Large Synoptic Survey Telescope: Dark Energy Science Collaboration;LSST Dark Energy Science Collaboration,2012

4. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report;Spergel,2015

5. Cosmology with the SPHEREX All-Sky Spectral Survey;SPHEREx Collaboration,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3