GammaBayes: a Bayesian pipeline for dark matter detection with CTA

Author:

Pinchbeck LiamORCID,Thrane EricORCID,Balazs CsabaORCID

Abstract

Abstract We present GammaBayes, a Bayesian Python package for dark matter detection with the Cherenkov Telescope Array (CTA). GammaBayes takes as input the CTA measurements of gamma rays and a user-specified dark-matter particle model. It outputs the posterior distribution for parameters of the dark-matter model including the velocity-averaged cross section for dark-matter self interactions 〈σv〉 and the dark-matter mass mχ . It also outputs the Bayesian evidence, which can be used for model selection. We demonstrate GammaBayes using 525 hours of simulated data, corresponding to 108 observed gamma-ray events. The vast majority of this simulated data consists of noise, but 100000 events arise from the annihilation of scalar singlet dark matter with mχ = 1 TeV. We recover the dark matter mass within a 95% credible interval of mχ ∼ 0.96–1.07 TeV. Meanwhile, the velocity averaged cross section is constrained to 〈σv〉 ∼ 1.4–2.1 × 10-25 cm3 s-1 (95% credibility). This is equivalent to measuring the number of dark-matter annihilation events to be NS ∼ 1.1-0.2 +0.2 × 105. The no-signal hypothesis 〈σv〉 = 0 is ruled out with about 5σ credibility. We discuss how GammaBayes can be extended to include more sophisticated signal and background models and the computational challenges that must be addressed to facilitate these upgrades. The source code is publicly available here.

Publisher

IOP Publishing

Reference42 articles.

1. The Faintest Dwarf Galaxies;Simon;Ann. Rev. Astron. Astrophys.,2019

2. Cosmological Parameters from Observations of Galaxy Clusters;Allen;Ann. Rev. Astron. Astrophys.,2011

3. The amplitude of mass fluctuations in the Universe;White;Monthly Notices of the Royal Astronomical Society,1993

4. Die Rotverschiebung von extragalaktischen Nebeln;Zwicky;Helv. Phys. Acta,1933

5. The Extended Rotation Curve and the Dark Matter Halo of M33;Corbelli;Mon. Not. Roy. Astron. Soc.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3