Energy-dependent boosted dark matter from diffuse supernova neutrino background

Author:

Das AnirbanORCID,Herbermann TimORCID,Sen ManibrataORCID,Takhistov Volodymyr

Abstract

Abstract Diffuse neutrinos from past supernovae in the Universe present us with a unique opportunity to test dark matter (DM) interactions. These neutrinos can scatter and boost the DM particles in the Milky Way halo to relativistic energies allowing us to detect them in terrestrial laboratories. Focusing on generic models of DM-neutrino and electron interactions, mediated by a vector or a scalar boson, we implement energy-dependent scattering cross-sections and perform detailed numerical analysis of DM attenuation due to electron scattering in-medium while propagating towards terrestrial experiments. We set new limits on DM-neutrino and electron interactions for DM with masses in the range ∼ (0.1, 104) MeV, using recent data from XENONnT, LUX-ZEPLIN, and PandaX-4T direct detection experiments. We demonstrate that consideration of energy-dependent cross-sections for DM interactions can significantly affect constraints previously derived under the assumption of constant cross-sections, modifying them by multiple orders of magnitude.

Publisher

IOP Publishing

Reference91 articles.

1. The Hunt for Dark Matter;Gelmini,2015

2. Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog;Akerib,2022

3. First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment;XENON Collaboration;Phys. Rev. Lett.,2023

4. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment;LZ Collaboration;Phys. Rev. Lett.,2023

5. Background determination for the LUX-ZEPLIN dark matter experiment;LZ Collaboration;Phys. Rev. D,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3