Abstract
Abstract
This study explores the impact of antisymmetric tensor effects on spherically symmetric black holes, investigating photon spheres, shadows, emission rate and quasinormal frequencies in relation to a parameter which triggers the Lorentz symmetry breaking. We examine these configurations without and with the presence of a cosmological constant. In the first scenario, the Lorentz violation parameter, denoted as λ, plays a pivotal role in reducing both the photon sphere and the shadow radius, while also leading to a damping effect on quasinormal frequencies. Conversely, in the second scenario, as the values of the cosmological constant (Λ) increase, we observe an expansion in the shadow radius. Also, we provide the constraints of the shadows based on the analysis observational data obtained from the Event Horizon Telescope (EHT) focusing on Sagittarius A*
shadow images. Additionally, with the increasing Λ, the associated gravitational wave frequencies exhibit reduced damping modes.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献