On the capability of high redshift kSZ measurement with galaxy surveys

Author:

Chen ZiyangORCID,Zhang Pengjie

Abstract

Abstract The kinematic Sunyaev-Zel'dovich (kSZ) effect has been detected at z < 1 using various techniques and data sets. The ongoing and upcoming spectroscopic galaxy surveys such as DESI (Dark Energy Spectroscopic Instrument) and PFS (Prime Focus Spectrograph) will push the detection beyond z = 1, and therefore map the baryon distribution at high redshifts. Such detection can be achieved by both the kSZ stacking and tomography methods. While the two methods are theoretically equivalent, they differ significantly in the probed physics and scales, and required data sets. Taking the combination of PFS and ACT (Atacama Cosmology Telescope) as an example, we build mocks of kSZ and galaxies, quantify the kSZ detection S/N, and compare between the two methods. We segment the PFS galaxies into three redshift bins: 0.6 < z < 1.0, 1.0 < z < 1.6, and 1.6 < z < 2.4. For tomography method, our analysis reveals that the two higher redshift bins exhibit significantly higher S/N ratios, with values of 32 and 28, respectively, compared to the first redshift bin, which yielded an S/N of 8. This is attributed to not only the increasing of electron density with redshifts, but also the larger survey volume and the reduced non-linearity, facilitating velocity reconstruction at higher redshifts. Therefore, the capability of the PFS survey to measure high redshift kSZ effect stands as a substantial advantage over other spectroscopic surveys at lower redshift. The S/N of kSZ stacking largely depends on the number of galaxy groups available from another photometric survey. But in general, its S/N is lower than that of kSZ tomography, largely due to CMB instrument noise and error in galaxy group redshift. Incorporating next-generation CMB surveys like CMB-S4, characterized by significantly reduced instrument noise and improved angular resolution, is expected to enhance tomographic detection by a factor of ten and stacking detection by fivefold. This future high S/N detection holds the promise of not only providing precise constraints on the overall baryon abundance but also initiating a new insight into baryon distribution.

Publisher

IOP Publishing

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3