Are there any extragalactic high speed dark matter particles in the Solar neighborhood?

Author:

Santos-Santos IsabelORCID,Bozorgnia NassimORCID,Fattahi AzadehORCID,Navarro Julio F.ORCID

Abstract

Abstract We use the APOSTLE suite of cosmological hydrodynamical simulations of the Local Group to examine the high speed tail of the local dark matter velocity distribution in simulated Milky Way analogues. The velocity distribution in the Solar neighborhood is well approximated by a generalized Maxwellian distribution sharply truncated at a well-defined maximum “escape” speed. The truncated generalized Maxwellian distribution accurately models the local dark matter velocity distribution of all our Milky Way analogues, with no evidence for any separate extragalactic high-speed components. The local maximum speed is well approximated by the terminal velocity expected for particles able to reach the Solar neighborhood in a Hubble time from the farthest confines of the Local Group. This timing constraint means that the local dark matter velocity distribution is unlikely to contain any high-speed particles contributed by the Virgo Supercluster “envelope”, as argued in recent work. Particles in the Solar neighborhood with speeds close to the local maximum speed can reach well outside the virial radius of the Galaxy, and, in that sense, belong to the Local Group envelope posited in earlier work. The local manifestation of such envelope is thus not a distinct high-speed component, but rather simply the high-speed tail of the truncated Maxwellian distribution.

Publisher

IOP Publishing

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3