Phenomenology of Horndeski gravity under positivity bounds

Author:

de Boe DaniORCID,Ye GenORCID,Renzi FabrizioORCID,Albuquerque Inês S.ORCID,Frusciante NoemiORCID,Silvestri AlessandraORCID

Abstract

Abstract A set of conditions that any effective field theory needs to satisfy in order to allow for the existence of a viable UV completion, has recently gained attention in the cosmological context under the name of positivity bounds. In this paper we revisit the derivation of such bounds for Horndeski gravity, highlighting the limitations that come from applying the traditional methodology to a theory of gravity on a cosmological background. We then translate these bounds into a complete set of viability conditions in the language of effective field theory of dark energy. We implement the latter into EFTCAMB and explore the large scale structure phenomenology of Horndeski gravity under positivity bounds. We build a statistically significant sample of viable Horndeski models, and derive the corresponding predictions for the background evolution, in terms of w DE, and the dynamics of linear perturbations, in terms of the phenomenological functions μ and Σ, associated to clustering and weak lensing, respectively. We find that the addition of positivity bounds to the traditional no-ghost and no-gradient conditions considerably tightens the theoretical constraints on all these functions. The most significant feature is a strengthening of the correlation μ ≃ Σ, and a related tight constraint on the luminal speed of gravitational waves c 2 T ≃ 1. In this work we demonstrate the strong potential of positivity bounds in shaping the viable parameter space of scalar-tensor theories. This is certainly promising, but it also highlights the importance of overcoming all issues that still plague a rigorous formulation of the positivity bounds in the cosmological context.

Publisher

IOP Publishing

Reference89 articles.

1. Effective Gauge Theories;Weinberg;Phys. Lett. B,1980

2. The renormalization group and critical phenomena;Wilson;Rev. Mod. Phys.,1983

3. An Introduction to Effective Field Theories;Penco,2020

4. On the Development of Effective Field Theory;Weinberg;Eur. Phys. J. H,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3