Fast identification of transients: applying expectation maximization to neutrino data

Author:

Karl M.ORCID,Eller P.

Abstract

Abstract We present a novel method for identifying transients suitable for both strong signal-dominated and background-dominated objects. By employing the unsupervised machine learning algorithm known as expectation maximization, we achieve computing time reductions of over 104 on a single CPU compared to conventional brute-force methods. Furthermore, this approach can be readily extended to analyze multiple flares. We illustrate the algorithm's application by fitting the IceCube neutrino flare of TXS 0506+056.

Publisher

IOP Publishing

Reference20 articles.

1. Active galactic nuclei: what’s in a name?;Padovani;Astron. Astrophys. Rev.,2017

2. Gamma-ray bursts;Higdon;Ann. Rev. Astron. Astrophys.,1990

3. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations;Scargle;Astrophys. J.,2013

4. The spectra of IceCube Neutrino (SIN) candidate sources – IV. Spectral energy distributions and multiwavelength variability;Karl;Mon. Not. Roy. Astron. Soc.,2023

5. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A;IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration;Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3