Generalized Gibbons-Werner method for stationary spacetimes

Author:

Huang YangORCID,Cao Zhoujian,Lu Zhenyan

Abstract

Abstract The Gibbons-Werner (GW) method is a powerful approach in studying the gravitational deflection of particles moving in curved spacetimes. The application of the Gauss-Bonnet theorem (GBT) to integral regions constructed in a two-dimensional manifold enables the deflection angle to be expressed and calculated from the perspective of geometry. However, different techniques are required for different scenarios in the practical implementation which leads to different GW methods. For the GW method for stationary axially symmetric (SAS) spacetimes, we identify two problems: (a) the integral region is generally infinite, which is ill-defined for some asymptotically nonflat spacetimes whose metric possesses singular behavior, and (b) the intricate double and single integrals bring about complicated calculation, especially for highly accurate results and complex spacetimes. To address these issues, a generalized GW method is proposed in which the infinite region is replaced by a flexible region to avoid the singularity, and a simplified formula involving only a single integral of a simple integrand is derived by discovering a significant relationship between the integrals in conventional methods. Our method provides a comprehensive framework for describing the GW method for various scenarios. Additionally, the generalized GW method and simplified calculation formula are applied to three different kinds of spacetimes — Kerr spacetime, Kerr-like black hole in bumblebee gravity, and rotating solution in conformal Weyl gravity. The first two cases have been previously computed by other researchers, affirming the effectiveness and superiority of our approach. Remarkably, the third case is newly examined, yielding a innovative result for the first time.

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3