Abstract
Abstract
Motivated by the recent heated debate on whether the masses of local objects, such as compact stars or black holes (BHs), may be affected by the large-scale, cosmological dynamics, we analyze the conditions under which, in a general relativity framework, such a coupling small/large scales is allowed. We shed light on some controversial arguments, which have been used to rule out the latter possibility. We find that the cosmological coupling occurs whenever the energy of the central objects is quantified by the quasi-local Misner-Sharp mass (MS). Conversely, the decoupling occurs whenever the MS mass is fully equivalent to the (nonlocal) Arnowitt-Deser-Misner (ADM) mass. Consequently, for singular BHs embedded in cosmological backgrounds, like the Schwarzschild-de Sitter or McVittie solutions, we show that there is no cosmological coupling, confirming previous results in the literature. Furthermore, we show that nonsingular compact objects couple to the cosmological background, as quantified by their MS mass. We conclude that observational evidence of cosmological coupling of astrophysical BHs would be the smoking gun of their nonsingular nature.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Models of cosmological black holes;Physical Review D;2024-08-14
2. Cosmological coupling of local gravitational systems;Journal of Cosmology and Astroparticle Physics;2024-08-01
3. Disforming scalar-tensor cosmology;Physical Review D;2024-06-03